\mathfrak{P} and $\mathcal{N} \mathscr{P}$

We say a deterministic TM has time-complexity $T(n)$ if for every input w with length $|\mathrm{w}|=\mathrm{n}$ the TM halts (whether or not it accepts $w)$ after $T(n)$ steps. The class \mathscr{P} is $\{L \mid L$ is a language accepted by some TM with polynomial time complexity\}

We say that a non-deterministic TM has time-complexity $T(n)$ if for every input w with length n the TM can halt after $T(n)$ steps, in an Accept state if the TM accepts w. The class $\mathcal{N P}$ is $\{L \mid L$ is a language accepted by some non-deterministic TM with polynomial time complexity\}

While you can ask if any language is in \mathfrak{P} or $\mathcal{N P}$ we are often interested in algorithmic questions such as "Find the shortest path from node q_{1} to node q_{2} in this weighted graph." That translates to a \mathcal{P} or $\mathcal{N P}$ question by looking at the language $\left\{\mathrm{g} 1110^{n} \mid \mathrm{g}\right.$ is an encoding of a weighted graph and the graph has a path of length n or less from node q_{1} to node $\left.q_{2}\right\}$ A TM might determine if $g 1110^{n}$ for a particular graph g and a particular n is in this language by finding a path from q_{1} to q_{2} with length n.

Note that a non-deterministic TM can solve this by guessing the sequence of nodes on the shortest path from q_{1} to q_{2} and then verifying in polynomial time that these nodes do form a path from q_{1} to q_{2} and that the sum of the lengths of the edges on this path is no more than n.

Many people describe \mathscr{P} as the set of problems that can be solved in polynomial time while $\mathcal{N P}$ is the set of problems for which a solution can be verified in polynomial time.

It is obvious that \mathscr{P} is a subset of $\mathcal{N P}$. Perhaps the most important unsolved question in CS is: Is $\mathfrak{P}=\mathcal{N} \mathscr{P}$? This question arises from Cook's (or Cook-Levin) Theorem, which says that if one specific language L is in \mathfrak{P} then $\mathfrak{P}=\mathcal{N} \mathscr{P}$.

Let L be a language in $\boldsymbol{\mathcal { N P }}$. We say L is NP-complete if for every language A in $\boldsymbol{\mathcal { N P }}$ there is a polynomial time reduction of A to L in the sense that we can covert any string w in polynomial time to a string w ' so that w is in A if and only if w ' is in L. A polynomial-time decider for L then gives us a polynomial-time decider for every language A in $\mathcal{N S}$.

In other words, if L is NP-complete and L is in \mathscr{P}, then every problem that can be verified in polynomial-time could actually be solved in polynomial-time. That would have enormous ramifications.

We say a language L is NP-hard if every language A in $\mathcal{N} \mathfrak{P}$ reduces to L. So to be NP-complete a language must be
a) $\ln \mathcal{N P}$
b) NP-hard

Boolean expressions.

We will use \wedge, \vee, and \sim to represent the Boolean operators and, or, and not.

Definition: A Boolean expression is
a) A variable that can have value T or F
b) e $\wedge f, e \vee f, \sim e$, or (e) where e and f are Boolean expressions

For example, $x \wedge \sim(y \vee z)$ is a Boolean expression

Given values of the variables we can find the value of this expression: build a parse tree for it (linear time) and pass the Boolean values up the tree from the leaves to the root:

Given a Boolean expression we can find if there is a set of assignments to its variables for which the expression evaluates to T . We say such an expression is satisfiable. For example, we could build a truth table for it:

\mathbf{x}	\mathbf{y}	\mathbf{z}	$\mathbf{x} \wedge \sim(\mathbf{y} \vee \mathbf{z})$
T	T	T	F
T	T	F	F
T	F	T	F
T	F	F	T
F	T	T	F
F	T	F	F
F	F	T	F
F	F	F	F

Unfortunately, a truth table with k variables has 2^{k} lines so it can't be completed in polynomial time.

SAT is the language of satisfiable Boolean expressions.

Ex: $x \wedge \sim(y \vee z)$ is in SAT: take $x=T, y=F, z=F$
Ex: $x \wedge \sim y \wedge(y \vee \sim x)$ is not in SAT

Cook's Theorem (Stephen Cook, U. Toronto, 1971): SAT is NPcomplete.

It is easy to see that SAT is in $\mathcal{N P}$: Guess the right values of the variables and verify them by evaluating a parse tree for the expression. This takes linear time.

To prove Cook's Theorem we need to show that every $\mathcal{N} \mathfrak{P}$ problem reduces in polynomial time to SAT.

Let L be any language in NP. This means there is a non-deterministic TM M that accepts L and M halts on any input w in time $p(|w|)$ for some polynomial p.

To prove Cook's Theorem we will produce from M and w a Boolean expression that is satisfiable if and only if M accepts w .

Suppose w is any string with $|w|=n$ and M is any TM. If M accepts w there is a sequence of configurations $\alpha_{0} \alpha_{1} \ldots \alpha_{p(n)}$ so that
a) α_{0} is the initial configuration for the computation of M on w
b) Each $\alpha_{i}=>\alpha_{i+1}$
c) $\alpha_{p(n)}$ is a configuration in an accept state.

We will create a Boolean expression B that is satisfiable if and only if such a sequence of configurations is possible. So if SAT is in P we can show L is in P :
a) Start with a nondeterministic TM that accepts L
b) For any string w construct B in polynomial time
c) determine if B is in SAT in polynomial time
d) B is in SAT if and only if w is in L

Note that we need to construct B in polynomial time, so it is important that $|\mathrm{B}|$ be a polynomial function of $|\mathrm{w}|$.

In k steps we can write at most $|w|+k$ symbols on the tape so we'll assume the non-blank portion of the tape is no longer than $p(n)$.

Also, we 'll assume the TM runs exactly $p(n)$ steps for any input w with $|\mathrm{w}|=\mathrm{n}$

Here is some notation we'll use:
$X_{i j}$ is the $j^{\text {th }}$ symbol of the $\mathrm{i}^{\text {th }}$ configuration. If the $4^{\text {th }}$ configuration is $11 q_{2} 00$ then $X_{30}=1, X_{31}=1, X_{32}=q_{2}, X_{33}=0$, and $X_{34}=0$

For any tape symbol or state $A, Y_{i j A}$ is a Boolean variable whose intuitive meaning is " $\mathrm{X}_{\mathrm{ij}}==\mathrm{A}$ "

We will assume the start state of any TM is q_{1}.

The Boolean expression we will construct is $B=S \wedge N \wedge F$ where

- S says the first configuration is $q_{1} w$ (where q_{1} is the start state of the TM)
- N says each configuration is derived from the previous one.
- F says that in the $p(n)^{\text {th }}$ configuration the TM is in a final state

S and F are easy; N takes some work.

Step 1: If input w is $a_{1} a_{2} \ldots a_{n}$ then

$$
S=Y_{00 \mathrm{q} 1} \wedge Y_{01 \mathrm{a} 1} \wedge Y_{02 \mathrm{a} 2} \ldots \wedge Y_{\text {Onan }}
$$

Step 2: Let $\mathrm{q}_{\mathrm{f} 1} . \cdot \mathrm{q}_{\mathrm{fk}}$ be all of the final states of M.
Let $F_{j i}$ be $Y_{p(n) j \text { jafi }}$ This says the $\mathrm{j}^{\text {th }}$ symbol of the last configuration is q_{fi} Let F_{j} be $F_{j 1} \vee F_{j 2} \vee . . \vee F_{j k}$ This says the jth symbol of the last configuration is a final state.
Finally, F is $F_{0} \vee F_{1} \vee \ldots \vee F_{p(n)}$ this says the $T M$ accepts w.
Note that $|F j|$ is independent of w, so $|S|$ and $|F|$ are both $O(p(n))$

Step 3: We only need N, which says that each configuration is derived from the previous one. In fact, we'll make

$$
N=N_{0} \wedge N_{1} \wedge \ldots \wedge N_{p(n)-1}
$$

where N_{i} says that configuration $i+1$ is derived from configuration i.

To make Ni we need two kinds of subexpressions:
A_{ij} will say that the state symbol of the ith configuration is at position j and also that the $j-1^{\text {st }}, j^{\text {th }}$, and $j+1^{\text {st }}$ symbols of the $i+1^{\text {st }}$ configuration are correct for the corresponding transition of M.
B_{ij} will say that either the state symbol of the $\mathrm{i}^{\text {th }}$ configuration is at position $j-1$ or $j+1$ (and so symbol j is covered by $A_{i j}$) or else position j has a tape symbol that is copied correctly from configuration ito configuration i+1.

Given these, $\left.N_{i}=\left(A_{i 0} \vee B_{i 0}\right) \wedge\left(A_{i 1} \vee B_{i 1}\right) \wedge \ldots \wedge A_{i p(n)} \vee B_{i p(n)}\right)$

Let's pause for an example. Suppose the $i^{\text {th }}$ configuration is $010 q_{1} 10$ and M has transition $\delta\left(q_{1}, 1\right)=\left(q_{2}, 1, R\right)$. We want the $i+1^{\text {st }}$ configuration to be $0101 \mathrm{q}_{2} \mathrm{O}$.
$\mathrm{B}_{\mathrm{i} 0}$ will say the initial 0 is copied correctly
$B_{i 1}$ will say the 1 is copied correctly
$\mathrm{B}_{\mathrm{i} 2}$ will say T
$B_{i 3}$ will say F
$A_{i 3}$ will say $0 q_{1} 1$ is changed to $01 q_{2}$
$\mathrm{B}_{\mathrm{i} 4}$ will say T
$\mathrm{B}_{\mathrm{i} 5}$ will say the final 0 is copied correctly

To make Bij , let $\mathrm{t}_{1} \ldots \mathrm{t}_{\mathrm{k}}$ be all of the tape symbols and $\mathrm{q}_{1} . . \mathrm{q}_{\mathrm{m}}$ all of the states.

$$
\begin{aligned}
& B_{i j}=\left(Y_{i(j-1) q 1} \vee Y_{i(j-1) q 2} \vee \ldots \vee Y_{i(j-1) q m}\right) \vee\left(Y_{i(j+1) q 1} \vee Y_{i(j+1) q 2} \vee \ldots \vee Y_{i(j+1) q m}\right) \\
& V\left[\left(Y_{i j t 1} \wedge Y_{(i+1) j t 1}\right) \vee\left(Y_{i j t 2} \wedge Y_{(i+1) \mathrm{j}+2}\right) \vee \ldots \vee\left(Y_{i j t k} \wedge Y_{(i+1) \mathrm{jk}}\right)\right]
\end{aligned}
$$

Note that $|\mathrm{Bij}|$ has nothing to do with the input w .
A_{ij} describes the legal transitions..
Suppose we have a move to the right: $\delta\left(q_{s}, a\right)=\left(q_{t}, b, R\right)$
If the $i^{\text {th }}$ configuration is $\alpha c q_{s} a \beta$ with q_{s} at position j, we want the $\mathrm{i}+1^{\text {st }}$ configuration to be $\alpha c b q_{\mathrm{t}} \beta$

The phrase of Aij for this is

$$
\begin{aligned}
& p=Y_{i j a s} \wedge Y_{i(j+1) a} \wedge Y_{(i+1) j b} \wedge Y_{(i+1)(j+1) a t} \\
& \wedge\left[\left(Y_{i(j-1) t 1} \wedge Y_{(i+1)(j-1) t 1)}\right) \vee \ldots \vee\left(Y_{i(j-1) t \mathrm{k}} \wedge Y_{(i+1)(j-1)+k}\right)\right]
\end{aligned}
$$

On the other hand suppose we have a move left: $\delta\left(q_{s}, a\right)=\left(q_{t}, b, L\right)$
If the $i^{\text {th }}$ configuration is $\alpha c q_{s} a$ with q_{s} at position j, we want the $i+1^{\text {st }}$ configuration to be $\alpha q_{t} \mathrm{cb} \beta$. The phrase of Aij for this is

$$
\begin{aligned}
& p=Y_{i j q s} \wedge Y_{(i+1)(j-1) a t} \wedge Y_{i(j+1) \mathrm{a}} \wedge Y_{(i+1)(j+1) \mathrm{b}} \\
& \wedge\left[\left(Y_{i(j-1)+1} \wedge Y_{(i+1) j+1)}\right) \vee \ldots \vee\left(Y_{i(j-1)+k} \wedge Y_{(i+1) j \mathrm{tk}}\right)\right]
\end{aligned}
$$

If M has L transitions and $\mathrm{p}_{\mathrm{ijt}}$ is the corresponding A_{ij} phrase for transition t then

$$
A_{i j}=p_{i j 1} \vee p_{i j 2} \vee \ldots \vee p_{i j l}
$$

This completes the construction. Note that this seamlessly incorporates the nondeterminism of the TM: SAT's question about whether some assignment of variables satisfies B corresponds to the nondeterministic question of whether there is some valid sequence of configurations that gets to a terminal state.

Now, how big is B ? $B=S \wedge N \wedge F$
$|S|=O(n)$
$|F|=O(p(n))$
$|N|=O\left(p^{2}(n)\right)$

This completes the proof that SAT is NP-complete.

